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Improving Monthly Great Lakes Ice Cover Outlooks

Raymond Assel, Sheldon Drobot, and Thomas E. Croley II

ABSTRACT.  Prediction of ice growth in the Great Lakes is important for commercial 
navigation, channel maintenance, water level and flow regulation, and winter operations planning.  
Current 30-day forecasts, issued on the first of the month for the first of the following month, 
mainly use forecasts of air temperature. They enable calculation of accumulated freezing degree-
days (AFDDs), which are used to identify similar historical events and associated ice cover as 
a forecast. More information is now available to ice forecasters, and we investigate its use in 
simple statistical models. The information considered here is limited to observations available at 
the time of a forecast, but include AFDDs, various telecommunication indices, and current ice 
cover. Additionally, the potential of AFDD forecasts is assessed in a statistical regression between 
ice cover and AFDDs during the month between the time of making the forecast and the start 
date of the forecast. (Actual AFDDs represent the best we could hope to forecast and so its use 
reveals the potential improvement that could be realized if a forecast of AFDD was developed.)  
Likewise, the potential of a mechanistic lake thermodynamics model is also assessed in a 
statistical correlation between ice cover and model outputs.

1.  INTRODUCTION

Each winter, most commercial navigation on the Great Lakes and the St. Lawrence Seaway is halted due in 
large part to the hazard caused by ice formation. Thirty-day graphic forecasts of ice conditions, i.e. forecast ice 
charts (see Figure 1 for an example), and observational ice charts are used by various US and Canadian federal 
government agencies (the US Coast Guard, Canadian Coast Guard, US Army Corps of Engineers, International 
Niagara Board of Control, St. Lawrence Development Corporation, and the St. Lawrence Seaway Authority) as 
an aid in planning winter related operational activities on the Great Lakes and their connecting channels. These 
activities include closing navigation locks in early winter and opening them the following spring to ocean going 
vessels as well as intra-lake traffic (at Sault St. Marie between Lake Superior and Lake Huron, at the Welland 
Canal between Lakes Erie and Ontario, and on the St. Lawrence Seaway at the outlet of Lake Ontario), placing ice 
booms at the head of the Niagara River and in the St. Lawrence River, and removal in late fall and installation the 
next spring of navigation aids that would be destroyed by ice during the winter.  The US Navy/NOAA National 
Ice Center (NIC) issues 30-day forecasts of ice conditions on the Great Lakes   (http://www.natice.noaa.gov/
pub/great_lakes/forecasts/) each winter on the first and fifteenth of every month from December through March. 
Snider (1974) originally developed the forecast methodology as essentially an analogue method using 30-day 
air temperature forecasts to calculate accumulated freezing degree-days.  Databases of freezing degree-days and 
historical ice charts are then searched to find the closest analogue winters.  This is the current basis for 30-day 
forecasts.

The potential benefits for skillful 30-day forecasts of Great Lakes ice cover are significant, given that over 1.4 
billion metric tons of cargo (with an estimated value of $200 billion) have been transported through the Great 
Lakes since 1959 (Allardice and Thorp, 1995). Current NIC forecasts represent one approach (analogue) to 
making long-range (30-day) forecasts, but do not fully include recent findings that variations in ice cover are 
associated with teleconnections such as the Tropical Northern Hemisphere index and the El Niño Southern 
Oscillation index (Rodionov et al., 2001). These recent findings and a recent study of summer ice severity in the 
Beaufort Sea (Drobot and Maslanik, 2002) offer hope that more skillful forecasts are possible. In this study we 
develop another approach to making long-range ice forecasts for the Great Lakes. Several empirical statistical 
models are developed to make 30-day forecasts of Beginning of Month (BOM) lake-averaged ice cover. Separate 
models are developed for each Great Lake (Superior, Michigan, Huron, Erie, and Ontario) for each of three 
BOM dates (January 1, February 1, and March 1). The predictor variables and BOM ice cover datasets and each 
model type are described and discussed. The best model for each lake for each month is identified in terms of 

http://www.natice.noaa.gov/pub/great_lakes/forecasts/
http://www.natice.noaa.gov/pub/great_lakes/forecasts/
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mean absolute error and skill score. A discussion of why some models are better than others for certain BOM 
dates is given within the context of the variations of BOM lake averaged ice cover and possible causes for those 
variations. The potential use of a mechanistic model to make 30-day ice forecasts is also addressed briefly.  
Results are summarized within the context of work needed to implement an experimental 30-day forecast based 
on these models.

2.  DATA

Assel (2003) created a digital Great Lakes ice cover data set to construct time series of daily ice concentration 
for locations in a grid over each Great Lake and used those grids to make computer animations that portray the 
seasonal progression of the spatial distribution patterns of ice cover for each winter season from 1973 to 2002.  
Here, we use this 30-winter data set of ice concentration to calculate lake averaged ice cover for each of the Great 
Lakes for BOM dates of: January 1, February 1, and March 1 for winters from 1973 to 2002; see Table 1.

We developed regression models to forecast the BOM ice cover with a 30-day lead. Predictor variables include 
monthly average accumulated freezing degree days (AFDDs) for each Great Lake as shown in Table 2; see Assel 
(1986) for description of methods used to calculate AFDDs. Predictor variables also include BOM ice cover 
and teleconnection indices, obtained from the NOAA Climate Prediction Center; see Table 3 for a list of final 
potential predictors. We compute the monthly lake-averaged AFDDs for National Weather Service (NWS) stations 
surrounding each lake from 1972 through 2002. Figure 2 displays these stations graphically. Lake Superior 

Figure 1. Example graphic forecast product for Lakes Huron, Erie, and Ontario.
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used stations at Duluth, Houghton, Marquette, and Sault Ste. Marie. Lake Michigan used stations at Green Bay, 
Milwaukee, Chicago, Muskegon, and Traverse City. Lake Huron used Alpena and Port Huron. Lake Erie used 
Detroit, Cleveland, Erie, and Buffalo. Lake Ontario used Rochester and Oswego. We also obtained monthly 
teleconnection data for November, December, and January from 1972 through 2002. Except for the Southern 
Oscillation Index (SOI), the teleconnection data are derived with rotated principal component analysis on 700 
hPa data, north of 20°N (Barnston and Livezey, 1987). The SOI is based on the adjusted difference in sea level 
pressure between Tahiti and Darwin. We did not utilize February data since the February teleconnection data are 
not available in time to forecast BOM March ice conditions.

3. METHODS

3.1 Forecast development

We developed four models to assess the statistical predictability of BOM ice cover with a 30-day lead. The 
simplest is the climatological model (C), which predicts the BOM ice cover as the long-term value;

   (1)

where Im is predicted BOM ice cover on a given Great Lake for month m, and Cm is the climatological ice cover 
on the same Great Lake for month m. For example, we would forecast the Lake Superior BOM January ice cover 
with the historical mean BOM January Lake Superior ice cover. The climatological model is often considered the 
baseline technique for assessing forecast improvements of other methods—if a new model cannot improve upon 
the forecast skill of the climatological model, then it is not worth implementing.

Figure 2.  Freezing degree-day stations used to calculate lake averages.
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The second approach is the anomaly propagation model (AP), which predicts the BOM ice cover as the linear 
translation of the BOM ice cover anomaly from the preceding month:  

  (2)

where Om is observed BOM ice cover for month m. For example, if the January BOM ice cover on Lake Huron 
is 30% below average, then we would forecast the February BOM for Lake Huron as 30% below average. The 
concept of this model is that if ice growth is averaged over a month, then the anomaly will propagate over the 
month. This model also could be termed a “persistence of anomaly” forecast. Since there is no reported BOM 
lake-averaged ice cover in December, the anomaly propagation model cannot be utilized for the January forecast.

The third model is termed the observational linear regression model (OLR), which predicts BOM ice cover from 
regression analysis, developed using observed ice cover, AFDD, and teleconnection data:

  (3)

where β0 is the intercept, β1 is the regression coefficient of the first independent variable, X1 is the value of the 
first independent variable, βn is the regression coefficient of the nth independent variable, and Xn is the value of 
the nth independent variable.  [Note that the subscripts in (3) denote different things; the subscript on ice cover is 
the month, and the subscripts on each independent variable are the variable numbers.] The regression coefficient 
βn measures the increase Im associated with an increase in Im (slope) with constant levels of the other independent 
variables. In discussing regression output, we also utilize the standardized regression coefficient, βn*, which 
measures the increase in Im (in standard deviations of Im, σIm) associated with an increase in Xn of one standard 
deviation, σXn, with constant levels of the other independent variables. Higher values of βn* indicate greater 
impact of variable n on prediction of Im.

  (4)

We developed the OLR model in a 3-step approach, and it contains at least one, but possibly more, independent 
variables to predict BOM ice cover. Initially, we correlated BOM ice cover data with all observed AFDD and 
teleconnection data available at the time of forecast. For instance, we correlated BOM February ice cover with 
all AFDD and teleconnection data from December and BOM January ice cover, all of which are available on 1 
January when the BOM February forecast is made. In the second step, we enter all variables statistically corre-
lated with the BOM ice cover (see Table 3) into a stepwise regression model for selection of a tentative model. 
The third step tests the tentative model for statistical viability. Statistically, tentative models are examined for 
multicollinearity using the variance inflation factor (VIF). The VIF measures size of the variance of an estimated 
regression coefficient relative to situations where variables X1,....,Xn are not linearly related. The VIF is computa-
tionally complex and interested readers are referred to Neter et al. (1990). Nonetheless, the application of the VIF 
is simple. If the VIF is greater than 10.0, then substantial correlation exists between predictor variables X1,....,Xn 
and the precision of an estimated coefficient is likely poor (Neter et al., 1990). When variables are uncorrelated, 
the VIF is 1.0 and an estimated coefficient’s precision is good.

The final model is termed the Perfect AFDD linear regression model (PLR), which is mathematically similar to 
the previous model, except that X1 is the observed value of the AFDD for the month between the forecast issue 
date and the forecast date. Conceptually, the aim of this model is to assess how well perfect predictions of the 
upcoming month’s AFDDs will improve the model. Rogers (1976) demonstrated that there was a strong link 
between maximum ice cover and AFDDs over the Great Lakes, so it is likely that adding predicted AFDDs to the 
model will improve the model accuracy. Although models cannot perfectly predict AFDDs, by utilizing the perfect 
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AFDD forecast we provide some insight into whether predictions of AFDDs should be included in the statistical 
model. As with the OLR, we used the VIF to assess the precision of the regression coefficients.

3.2  Forecast Evaluation with Monte Carlo Simulations

We assessed all models for accuracy by computing their mean absolute error (E) and forecast skill score (S).  
Error E is simply the average absolute error between predicted and observed values, and it gives a physically 
meaningful description of error

  (5)

where T is number of months in an evaluation period.

Skill S provides a relative assessment of how well other models compare with the climatological model (Wilks, 
1995)

  (6)

where Eref is the error of the climatological model and E is the error of one of the other three methods described 
above (anomaly propagation, observational linear regression model, or perfect AFDD linear regression model). 
If E=0, then the skill score is 100%, the maximum value. If E=Eref, then the skill score is 0%, indicating no 
improvement over climatology.  If E>Eref , then the skill score is negative, and the method is worse than climatol-
ogy. If 0<E<Eref, then the skill score is positive, and the method is better than climatology.

We evaluated the models with a cross-validated data set. We used independent data for good estimates of model 
accuracy; if we evaluated models with data used in developing them, they would appear to have unrealistically 
low errors. The Monte Carlo cross-validation technique used here randomly selects two thirds of the data for 
model development, and uses the remaining one third for evaluation. We generated 1000 samples for a robust 
estimate of model error and skill score.

4. RESULTS

4.1 Variability in BOM Conditions

On average, Lake Ontario has the lowest mean BOM ice cover for all months, and Lake Erie has the highest; see 
Table 4. This distribution is similar to the expected maximum ice covers for each Great Lake (Assel et al., 2003).  
Lake Ontario has the lowest interannual variability in BOM ice cover, as expressed by the standard deviation, 
compared with the other Great Lakes. Lake Erie has the highest interannual variability for BOM January and 
February ice cover while Lake Superior has the highest interannual variability for BOM March.

In general, ice cover is related to air temperature, wind conditions, and heat storage capacity of the lake; Rodionov 
et al. (2001) notes that high winds can produce up-welling of warm water, and they also can break up the ice 
cover. In either case, ice cover can change dramatically over a winter season. The higher interannual variability 
in Lake Erie BOM ice cover is likely related to its relatively shallow mean depth (at 19 m, Lake Erie is the 
shallowest lake) and low volume (483 km3). With the low volume, heat storage capacity is smallest for Lake Erie 
and, therefore, it is most responsive to interannual atmospheric variations. The high interannual variability in Lake 
Superior BOM March ice cover is likely due to its northern location and to variations in atmospheric conditions in 
February. During winters, when enough heat has been extracted from the lake by the end of January, extensive ice 
formation can occur if low air temperatures persist in February and winds are relatively calm. Lake Ontario’s low 
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interannual variability in BOM ice cover is due to the combination of its relatively mild winter air temperatures, 
which are only marginally lower that those for Lake Erie, and a lake volume (1634 km3) that is three times that of 
Lake Erie.

4.2  Forecasting BOM Conditions

Understanding interannual variability is particularly important for model development; the climatological model 
will perform better for lakes with lower interannual variability. (If there were no interannual variability, then the 
climatological model would give perfect forecasts; as interannual variability increases, climatological model 
forecasts degrade). For example, the cross-validated climatological mean absolute errors are lowest for Lake 
Ontario and highest for Lake Erie; see Figure 3. As noted above, atmospheric conditions exert a greater influence 
over Lake Erie than they do over Lake Ontario, due to differences in heat storage capacity. Since the interannual 
variability, as measured by the standard deviation, increases from January to March in all lakes, the errors also 
increase for all lakes, except Lake Erie, where the interannual variability is at its maximum in February. As the 
reference model, the skill score for the climatological model is zero for all lakes and all months; see Figure 4.

As noted previously, BOM ice cover data begins in January, so the anomaly propagation model is only applicable 
for February and March. Excluding Lake Ontario, the errors of the AP models are lower than climatology in 
February, and in many cases the errors for the AP are much lower than climatology; see Figure 3. The AP model 
is also better than climatology in March for all lakes. Additionally, the forecast skill is larger for March than for 
February, see Figure 4, suggesting ice conditions from the previous month are more important for forecasting 
March ice conditions than they are for forecasting February ice conditions.

Table 5 summarizes model coefficients as well as evaluation statistics for the OLR models. With the inclusion 
of observed AFDD and teleconnection data, the error of 14 of the 15 models is better than climatology (see 

Figure 3. Mean absolute error for prediction schemes.  Lower MAE values indicate better models.
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Figure 3), with skill scores greater than zero (see Figure 4). Of these 14, 7 are improvements over the anomaly 
propagation model, and 5 have no anomaly propagation model for comparison; see Figure 4. Overall, the OLR 
models are superior in 11 of the 15 prediction cases; the AP model is the best for three cases and the C model 
remains superior for one. Table 6 summarizes the best model for each lake and month of forecast.

Physically, for BOM January predictions, the November Tropical North-America (TNH) and the November 
North Atlantic Oscillation (NAO) indices are the only significant predictors; see Table 5. As described by the 
standardized coefficients, βn* in Table 5, the November TNH statistically exerts more influence than does the 
NAO. Assel and Rodionov (1998) discussed interactions between the TNH and Great Lakes ice cover; the TNH 
pattern strongly affects the strength and position of upper air flow near the Great Lakes. During positive TNH 
phases, meridional circulation dominates, leading to cooler winter conditions and thicker ice covers (Rodionov 
and Assel, 2000). In comparison, positive phases of the November NAO are related to lower ice covers on 1 
January.  Although positive phases of the NAO are linked to cooler eastern North American temperatures, we 
suggest that windier conditions may increase mixing in the Great Lakes, inhibiting ice cover.

For BOM February predictions, the BOM ice cover from each lake is the most important predictor for all lakes, 
except Lake Ontario (see Table 5), where only the December East Atlantic-Western Russian index (EAWR) 
is valuable. Positive phases of the December EAWR pattern are linked to lower ice covers on 1 February. The 
December Southern Oscillation index (SOI) also is valuable in predictions of Lake Superior and Lake Huron.  
Rodionov and Assel (2000) also demonstrate that positive SOI phases (El Niño) are linked to warmer winters in 
the Great Lakes region, leading to reduced ice extent, and vice versa.

Finally, for BOM March, the BOM February ice cover is most important for all lakes except Lake Erie, where the 
AFDDs from January are more important. Over Lake Michigan, the January Polar/Eurasian index (POL) also is 
relevant. Rodionov and Assel (2000) suggest that the Polar/Eurasian index is the most important teleconnection 
in determining mean basin-wide ice conditions; during positive POL phases, the polar vortex is strengthened, 
leading to more zonal flow over the Eastern USA, which in turn is related to warmer winter temperatures and less 
ice cover.

Figure 4. Skill score for prediction schemes (higher skill scores indicate better models).
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If perfect forecasts of the upcoming month’s AFDD were available, then statistical forecasts of the BOM would 
improve substantially; see Table 7. For instance, the mean absolute errors for the PLR model are much lower than 
for any other model on all lakes, with much higher skill scores; see Figures 3 and 4. As with the other models, 
the error is highest for Lake Erie and lowest for Lake Ontario. For BOM January forecasts, only an accurate 
prediction of December AFDDs is needed for all lakes, except Lake Michigan, where the November TNH also 
retains value. For BOM February, the January AFDDs are useful on all lakes, BOM January ice cover is relevant 
on all lakes except Ontario, and the December SOI remains valuable for Lake Superior. For BOM March, only 
two variables are needed for each lake: February AFDDs, and BOM February ice cover.

4.3 Use of Mechanistic Models

While the previous models are statistically based, mechanistic models theoretically should perform better 
than statistical models over short forecast times. One good candidate model already developed for estimating 
evaporation from the Great Lakes is GLERL’s large-lake thermodynamics and heat storage model. It is a 
continuous-simulation model of daily lake evaporation over long time periods and is physically based to have 
application under environmental conditions different than those under which they were derived. GLERL 
developed this lumped-parameter model for each of the Great Lakes based on an energy balance at the lake’s 
surface (Croley, 1989) and on one-dimensional (vertical) lake heat storage (Croley, 1992). Ice formation and loss 
is coupled also to lake thermodynamics and heat storage (Croley and Assel, 1994).

Two calibrations are involved in applying the model in a particular setting. The first determines parameters related 
to thermodynamics and superposition heat storage (Croley, 1992) and the effect of cloudiness on the atmospheric 
net long-wave radiation exchange (Croley, 1989). This calibration minimizes daily water surface temperature root 
mean square error (RMSE) by using methods described elsewhere (Croley and Hartmann, 1984). Meteorology 
data for 1948-1988 were provided by the National Climate Data Center and water surface temperature data on 
each of the Great Lakes, except Lake Michigan, were taken from airplane and satellite measurements. All were 
prepared as described by Croley (1989). Water surface temperature data for Lake Michigan from 1981 through 
1985 were gleaned from areal maps prepared at the NWS Marine Predictions Branch and extended through 
August 1988. The second calibration determines ice formation parameters that minimize daily ice cover RMSE 
with these same calibration techniques. Lake-averaged ice cover for model calibration was calculated from 
GLERL’s digital ice cover database (Assel, 1983; 2003). In most cases prior to 1973, less than 100% of a lake was 
observed on any given date. If less than 70% of the Lake Superior surface was observed, the ice cover for that 
date was not included in the model calibration. A subjective estimate of lake-averaged ice cover was made for the 
other Great Lakes if the data were insufficient.

Prior to calibration or model use, the (spatial) average temperature-depth profile in the lake and the ice cover 
must be initialized. While the ice cover is easy to determine as zero during major portions of the year, the average 
temperature-depth profile in the lake is generally difficult to determine. Since the effect of initial conditions 
diminishes with the length of a simulation, we used 2-3 years of simulation prior to the period of interest and the 
effects were nil from a practical point of view.

Empirical coefficients of the thermodynamics, heat storage, and ice sub-models were calibrated in an iterative 
process that used the two calibrations sequentially in rotation. We used independent data (lake-averaged daily 
surface temperature for the lake thermodynamics and heat storage sub-models and lake-averaged daily ice cover 
for the lake ice cover sub-model). First we minimized the RMSE of daily water surface temperature by calibrating 
lake thermodynamics and heat storage model parameters and holding the parameters for the ice cover sub-model 
constant. We then held lake thermodynamics and heat storage sub-model parameters constant and calibrated the 
parameters of the ice cover sub-model to minimize the RMSE of daily ice cover. Then we repeated the process 
until the RMSEs for both water surface temperatures and ice cover were not significantly reduced from previous 
iterations. In a second calibration, we used only lake-averaged daily surface temperature data to determine all 
parameters (both for the lake thermodynamics and heat storage sub-models and for the lake ice cover sub-model).
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In order to assess whether a mechanistic model could be useful in predicting ice cover, BOM ice data observations 
were correlated with previous-month lake-averaged model outputs from the two versions of the model. Table 8 
shows correlations for the model calibrated to observed ice cover and surface water temperatures on each Great 
Lake, and Table 9 shows correlations for the model calibrated to observed surface water temperatures only. Both 
tables indicate that there is a strong correlation between several model outputs and observed BOM ice cover, 
indicating that this model may have significant predictive value. The correlations between observed ice cover 
and model over-lake air temperature are particularly noteworthy, and strong correlations also exist between 
observed ice cover and model over-lake specific humidity, ice surface temperature, ice surface area, ice average 
thickness, and net long-wave exchange. The high correlations between observed ice cover and model over-
lake air temperature are expected and echo the results from the preceding predictive models. The other strong 
correlations also are physically valid and, in many cases, these variables are not routinely available from another 
source. As such, additional research examining how the 30-day forecasts of this model correlate with ice cover 
might provide a completely new alternative to predicting ice cover, or more likely, several of the model outputs 
might be combined with the observed data to create new regression forecasts with a lower error than the current 
models shown here (C, AP, or OLR). Since the PLR forecasts indicate that accurate forecasts of the upcoming 
month’s temperature, in terms of freezing degree days, would be very valuable for lowering prediction error, good 
forecasts of daily over-lake temperature could be utilized as a proxy for AFDDs, perhaps improving the 30-day 
ice forecasts substantially. Since 30-day forecasts of ice cover are not made in the Great Lakes with reference to 
ice thickness or some of the other variables that this model can produce, it is also likely that they may provide 
new information about the ice cover that is not currently available, which again may reduce the error estimate.

5.  SUMMARY

This study examined improving the 30-day forecast of the Great Lakes monthly mean ice cover for the beginning 
of January, February, and March. The ice conditions were based on recently developed digital ice climatology.  
Predictive data include (1) freezing degree days obtained from NWS station data, (2) previous month observed 
ice cover, and (3) monthly mean teleconnection data. Additionally considered were (4) perfectly forecast freezing 
degree day totals for upcoming months (to determine the value of such a prediction), and (5) output from a large-
lake thermodynamics and heat storage model (to determine whether a mechanistic model may prove valuable).  
Anomaly propagation, linear regression, and perfect linear regression models were developed from data types 1-4 
and compared to climatology. The regression models were developed in a three-step approach: (a) correlate all 
possible data with the observed ice cover and retain only those variables with a significant correlation, (b) utilize 
stepwise regression to choose a good model, and (c) run 1000 Monte Carlo simulations holding 1/3 of the data 
for testing to obtain a more realistic error assessment. Model results were evaluated with mean absolute error and 
skill score. The following results emerged:

(1) With empirical data available 30 days prior to a prediction, utilizing climatology provides the lowest 
error for the 1 January Lake Ontario ice cover, while the anomaly propagation model supplies the 
lowest error for the 1 March forecast for Lakes Superior, Michigan, and Huron, and the observed 
linear regression model provides the lowest error for the remaining 11 predictions.

(2) For predictions of 1 January ice cover on 1 December, the mean November Tropical Northern 
Hemisphere teleconnection index provides the lowest prediction error, excepting Lake Ontario, 
where the climatological 1 January ice cover is a superior prediction. Including the November North 
Atlantic Oscillation index is helpful in reducing the error for Lakes Michigan, Huron, and Erie. For 
predictions of 1 February ice cover on 1 January, the 1 January mean lake-ice cover typically is 
the most important predictor, except for Lake Ontario, where the December East Atlantic-Western 
Russia teleconnection index is more valuable. For predictions of 1 March ice cover on 1 February, 
the 1 February ice cover generates the lowest error for all lakes except Erie, where the accumulated 
freezing degree days over Lake Erie in January provides a lower error prediction.
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(3) If perfect forecasts of the upcoming month’s freezing degree-days were available, the forecast 
equations for most months would need fewer parameters, and the error would be lower for all months.  
This suggests that as numerical weather models improve their accuracy of 30-day forecasts, analysts 
should consider utilizing these predictions more rigorously in the 30-day ice forecast.

Correlations of ice cover with a mechanistic model output show strong associations between ice cover 
observations and model over-lake air temperature, over-lake specific humidity, ice surface temperature, ice 
surface area, ice average thickness, and net long-wave exchange. Future research on a 30-day predictive mode 
may provide a new forecast technique, or additional data for regression forecasts, that could significantly lower 
the estimated error.

In this study we developed 30-day forecasting models of lake-averaged ice cover. In order to use these models in 
an operational forecast mode, it is necessary to relate the lake averaged ice cover to spatial patterns of ice cover 
on BOM dates. One way this could be done is by examining several (3, 4, or 5) winters (over the 1973-2002 
period of record) where the observed BOM lake averaged ice cover is closest to the forecast lake averaged ice 
cover (using the models considered here) and make a subjective analysis of the ice distribution patterns based on 
these historical ice charts.
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Table 1. Lake averaged ice cover for beginning of month dates (%).

 
Year 

    Superior     Michigan     Huron     Erie    Ontario
Jan Feb Mar Jan Feb Mar Jan Feb Mar Jan Feb Mar Jan Feb Mar

  1973 12.2 19.6 67.9 7.4 20.2 30.7 19.3 25.1 65.5 2.7 10.3 90.1 2.7 22.4 33.7 
1974 12.4 21.4 73.6 5.2 15.6 30.7 11.7 24.1 61.4 10.2 8.9 57.5 5.1 7.2 14.6 
1975 0.0 19.3 19.9 0.0 24.5 18.4 0.0 34.2 32.4 0.0 14.7 50.8 0.0 5.5 4.2 
1976 4.0 26.1 27.3 8.7 26.0 14.2 16.8 52.3 37.5 14.8 92.7 26.5 2.8 13.9 7.0 
1977 28.0 81.6 94.2 31.8 74.7 72.5 44.0 84.4 91.6 84.2 98.5 93.9 19.7 33.4 34.3 
1978 8.7 17.8 91.6 8.7 33.7 61.9 21.4 64.7 95.6 44.1 98.2 100.0 5.7 26.1 47.6 
1979 7.0 57.3 93.7 10.5 34.1 88.0 15.0 58.7 89.8 5.0 82.0 78.7 2.2 22.2 20.2 
1980 0.0 40.3 62.9 0.0 29.1 34.0 0.0 42.1 58.3 0.0 56.9 88.1 0.0 11.0 22.5 
1981 24.3 61.0 65.0 26.4 33.1 14.8 40.2 79.0 40.2 61.5 89.9 52.2 28.2 15.8 5.2 
1982 4.1 42.5 73.9 2.5 44.2 38.2 6.2 67.6 80.0 0.1 96.0 94.9 0.0 33.1 27.1 
1983 6.2 18.6 12.1 0.8 18.6 11.7 0.7 31.8 18.1 0.2 9.2 5.2 0.0 11.0 2.3 
1984 18.1 36.8 31.4 12.5 21.8 14.9 29.5 68.1 30.6 73.0 93.6 76.4 5.3 18.5 8.0 
1985 18.0 43.5 81.2 7.9 29.0 38.7 13.5 52.9 53.9 8.8 89.0 77.0 4.2 13.1 33.9 
1986 12.0 41.6 85.0 18.2 30.3 64.8 25.9 66.1 73.2 90.7 95.5 87.9 10.1 20.7 43.7 
1987 1.9 11.0 4.6 3.6 14.4 8.3 3.4 36.4 34.8 1.0 56.8 67.4 1.0 3.5 3.9 
1988 0.0 16.3 45.4 0.0 19.7 17.7 0.0 29.1 52.4 0.0 48.6 85.6 0.0 6.4 18.9 
1989 7.9 14.4 54.5 5.2 10.4 28.5 11.8 19.8 50.3 3.5 8.9 90.7 0.6 3.9 9.9 
1990 28.6 33.6 55.4 31.2 17.2 23.9 36.2 30.7 59.0 57.5 30.0 45.9 17.3 10.3 29.5 
1991 1.9 70.4 78.9 2.5 20.4 17.7 1.0 43.8 32.8 3.3 35.1 29.4 0.0 11.5 8.0 
1992 6.1 25.0 22.8 1.6 27.2 11.0 5.0 45.2 34.8 0.2 35.8 69.1 0.5 10.3 9.3 
1993 4.9 4.7 76.6 0.8 15.2 32.2 11.6 22.7 78.3 1.2 25.5 92.4 1.0 3.4 29.0 
1994 9.8 85.9 95.5 10.2 50.8 59.3 23.0 89.6 96.1 26.0 95.9 92.1 5.3 46.8 30.4 
1995 1.6 6.9 21.3 0.1 8.7 14.8 0.0 18.8 37.7 0.0 13.9 58.1 0.2 1.3 10.8 
1996 4.4 35.5 95.6 9.4 32.2 19.9 20.5 59.1 72.6 21.5 97.6 73.3 2.4 13.7 5.7 
1997 6.2 25.8 65.2 9.6 27.5 20.7 12.0 48.6 53.9 11.9 91.8 55.2 0.0 13.8 8.1 
1998 1.8 8.3 2.4 1.7 10.6 5.2 7.2 20.2 13.7 1.9 2.9 0.0 0.7 4.9 1.6 
1999 3.1 6.5 9.7 4.0 10.7 13.0 6.8 20.1 23.9 2.5 46.2 45.7 0.7 6.5 4.2 
2000 2.3 7.8 9.0 4.4 14.7 11.8 8.0 37.9 22.1 8.8 90.7 33.8 1.4 22.3 5.8 
2001 7.6 7.1 38.3 28.3 19.4 14.3 25.2 27.2 32.3 73.2 92.5 52.6 2.0 7.9 8.4 
2002 1.7 5.4 4.4 2.6 6.1 9.4 3.4 9.2 12.7 5.8 1.1 0.3 0.9 1.1 2.9 

Median 6.2 23.2 59.2 5.2 21.1 19.2 11.8 40.0 51.4 5.4 56.9 68.3 1.2 11.3 9.6 
Mean 8.2 29.7 52.0 8.5 24.7 28.0 14.0 43.7 51.2 20.5 57.0 62.4 4.0 14.1 16.4 
Std 
Dev

7.9 22.4 31.7 9.3 13.8 20.8 12.2 21.1 24.6 28.5 36.6 28.7 6.5 10.5 13.2 
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Table 2.  Lake averaged AFDD for December, January, and February (°F).

Year
    Superior     Michigan     Huron     Erie     Ontario

Dec Jan Feb Dec Jan Feb Dec Jan Feb Dec Jan Feb Dec Jan Feb
1973 567 473 473 292 208 220 174 194 322 25 91 197 18 118 283
1974 481 649 595 252 310 313 232 261 387 111 97 208 123 177 272
1975 279 558 434 87 219 235 85 210 210 29 68 78 20 93 119
1976 475 706 335 169 417 47 188 490 131 116 344 -48 172 404 0
1977 727 877 466 478 689 272 443 637 286 290 607 188 265 503 198
1978 474 671 571 278 505 497 224 446 444 134 382 463 137 318 425
1979 532 814 733 269 618 538 179 485 542 49 375 450 78 315 504
1980 263 586 568 53 335 357 52 302 357 -3 192 290 29 227 355
1981 549 603 391 272 399 168 341 457 159 213 390 40 284 500 -8
1982 396 868 569 199 635 341 163 568 358 101 423 249 105 482 228
1983 288 482 287 57 220 91 50 223 117 17 100 7 14 169 91
1984 732 722 206 509 462 12 373 490 24 313 390 -71 230 358 -41
1985 430 660 558 97 491 339 72 423 313 1 362 214 1 345 174
1986 680 563 500 445 324 281 348 344 300 267 192 170 218 227 223
1987 297 415 238 100 220 52 80 241 192 17 168 99 5 219 243
1988 243 650 627 65 404 346 57 331 394 30 199 212 56 228 216
1989 460 415 654 197 74 382 211 127 356 89 -29 211 129 75 260
1990 740 310 405 480 35 128 545 89 212 410 -87 -3 476 -32 79
1991 425 668 339 186 372 93 143 379 130 59 171 1 40 227 48
1992 377 450 342 101 158 56 151 242 173 46 114 31 102 197 121
1993 357 495 499 123 236 277 80 225 365 3 66 224 54 147 363
1994 357 944 675 164 586 369 175 636 437 149 434 219 163 548 312
1995 170 432 543 14 226 236 5 191 349 4 85 197 24 43 253
1996 502 715 565 263 375 268 292 373 326 214 235 162 212 286 207
1997 400 647 428 157 369 163 130 369 189 22 263 4 9 261 50
1998 212 423 75 63 154 -75 54 145 -16 28 29 -50 33 74 -10
1999 329 611 270 157 364 27 148 384 112 91 216 -39 88 276 42
2000 291 562 291 164 295 55 135 279 115 93 207 -12 91 256 56
2001 653 359 529 445 216 239 420 231 208 329 150 38 271 154 97
2002 184 329 266 95 37 22 80 100 125 78 -51 5 51 -27 1

Median 413 595 470 167 329 236 157 316 249 83 192 130 89 227 186
Mean 429 588 448 208 332 212 187 329 254 111 206 124 116 239 172

Std Dev 165 164 158 142 172 152 134 151 134 113 164 141 110 151 140
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Table 3.  Potential Predictors for each lake by month.

January BOMa February BOMb March BOMc

November Tropical-Northern 
Hemisphere
(TNH Nov)

BOM January lake-averaged 
ice cover
(BOM Jan)

BOM February lake-averaged 
ice cover
(BOM Feb)

November North Atlantic 
Oscillation
(NAO Nov)

December lake-averaged 
freezing degree days
(AFDD Dec)

January lake-averaged freez-
ing degree days
(AFDD Jan)

December Southern Oscilla-
tion Index
(SOI Dec)

January Polar/Eurasian Index
(POL Jan)

December East Atlantic-West-
ern Russia Index
(EAWR Dec)

January East Pacific Index
(EP Jan)

Any variables retained in 
regression analysis from pre-
ceding month

Any variables retained in 
regression analysis from pre-
ceding month

 aForecast for January BOM is made BOM December.
 bForecast for February BOM is made BOM January.
 cForecast for March BOM is made BOM February.

Table 4.  1973—2002 Lake-Averaged Ice Cover Characteristics.

Lake January BOM February BOM March BOM

Mean Ice Conditions (%)
Superior 8.2 29.7 52.0
Michigan 8.5 24.7 28.0
Huron 14.0 43.7 51.2
Erie 20.5 57.0 62.4
Ontario 4.0 14.1 16.4

Standard Deviation of Ice Conditions (%)
Superior 8.0 22.8 32.2
Michigan 9.4 14.0 21.2
Huron 12.4 21.5 25.0
Erie 29.0 37.2 29.2
Ontario 6.6 10.7 13.4

Minimum Ice Conditions (%)
Superior 0.0 4.7 2.4
Michigan 0.0 6.1 5.2
Huron 0.0 9.2 12.7
Erie 0.0 1.1 0.0
Ontario 0.0 1.1 1.6

Maximum Ice Conditions (%)
Superior 28.6 85.9 95.6
Michigan 31.8 74.7 88.0
Huron 44.0 89.6 96.1
Erie 90.7 98.5 100.0
Ontario 28.2 46.8 47.6
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Table 5. Observational Regression Model Results.  

BOM January BOM February BOM March

i Variable βi βi* VIF Variable βi βi* VIF Variable βi βi* VIF

Lake Superior

0 Constant 8.07 Constant 17.14 Constant 23.88

1 TNH Nov 3.23 0.40 1.00 BOM Jan 1.27 0.45 1.01 BOM Feb 0.95 0.67 1.00

2 SOI Dec -2.34 -0.38 1.01

Lake Michigan

0 Constant 8.77 Constant 18.89 Constant 6.48

1 TNH Nov 5.61 0.59 1.00 BOM Jan 0.68 0.46 1.00 BOM Feb 0.88 0.58 1.13

2 NAO Nov -2.78 -0.31 1.00 POL Jan -6.19 -0.28 1.13

Lake Huron

0 Constant 14.39 Constant 28.71 Constant 22.04

1 TNH Nov 5.99 0.48 1.00 BOM Jan 0.95 0.55 1.02 BOM Feb 0.67 0.57 1.00

2 NAO Nov -4.11 -0.34 1.00 SOI Dec -1.77 -0.30 1.02

Lake Erie

0 Constant 21.84 Constant 42.89 Constant 46.41

1 NAO Nov -12.17 -0.43 1.00 BOM Jan 0.69 0.54 1.00 AFDD Jan 0.08 0.43 1.00

2 TNH Nov 12.00 0.41 1.00

Lake Ontario

0 Constant 3.93 Constant 13.12 Constant 6.57

1 TNH Nov 2.73 0.41 1.00 EAWR Dec -5.94 -0.56 1.00 BOM Feb 0.70 0.55 1.00
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Table 6.  Summary of best models.

Month Best prediction model

Superior
January OLR

February OLR

March AP

Michigan
January OLR

February OLR

March AP

Huron
January OLR

February OLR

March AP

Erie
January OLR

February OLR

March OLR

Ontario
January C

February OLR

March OLR
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Table 7.  Perfect AFDD Regression Model Results.  

BOM January BOM February BOM March

i Variable βi βi* VIF Variable βi βi* VIF Variable βi βi* VIF

Lake Superior

0 Constant -8.09   Constant -29.46   Constant -21.07   

1 AFDD Dec 0.04 0.78 1.00 AFDD Jan 0.08 0.60 1.08 AFDD Feb 0.12 0.57 1.11

2 BOM Jan 1.08 0.38 1.03 BOM Feb 0.70 0.49 1.11

Lake Michigan

0 Constant -1.44   Constant 0.87   Constant -4.89   

1 AFDD Dec 0.05 0.72 1.22 AFDD Jan 0.06 0.73 1.03 AFDD Feb 0.08 0.58 1.23

2 TNH Nov 2.63 0.27 1.22 BOM Jan 0.48 0.32 1.03 BOM Feb 0.65 0.43 1.23

Lake Huron

0 Constant -1.28   Constant 1.17   Constant -4.76   

1 AFDD Dec 0.08 0.88 1.00 AFDD Jan 0.11 0.76 1.19 AFDD Feb 0.14 0.74 1.05

2 BOM Jan 0.50 0.29 1.19 BOM Feb 0.48 0.41 1.05

Lake Erie

0 Constant -4.65   Constant 15.93   Constant 32.02   

1 AFDD Dec 0.23 0.89 1.00 AFDD Jan 0.17 0.73 1.16 AFDD Feb 0.14 0.68 1.03

2 BOM Jan 0.34 0.27 1.16 BOM Feb 0.23 0.29 1.03

Lake Ontario

0 Constant -4.65   Constant 15.93   Constant 32.02   

1 AFDD Dec 0.23 0.89 1.00 AFDD Jan 0.17 0.73 1.16 AFDD Feb 0.14 0.68 1.03
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Table 8.  Correlations between BOM ice cover and previous-month average model 
variables, model calibrated to observed surface temperatures and ice concentrations.

Superior Michigan Huron
Jan Feb Mar Jan Feb Mar Jan Feb Mar

Over-lake air temperature -0.83 -0.63 -0.78 -0.82 -0.79 -0.78 -0.88 -0.90 -0.86

Over-lake specific humidity -0.78 -0.59 -0.69 -0.81 -0.78 -0.73 -0.80 -0.87 -0.81

Over-lake wind speed 0.36 0.00 0.03 0.42 0.56 0.32 0.36 0.42 0.20

Over-lake cloud cover -0.16 -0.37 -0.46 -0.01 0.05 -0.32 0.00 -0.14 -0.40

Surface water temperature -0.56 -0.51 -0.40 -0.63 -0.42 -0.23 -0.48 -0.61 -0.38

Lake evaporation 0.64 -0.09 -0.14 0.44 0.60 0.40 0.58 0.15 0.22

Incident short-wave radiation 0.14 0.39 0.43 -0.01 -0.09 0.31 -0.02 0.18 0.37

Reflected short-wave radiation -0.58 -0.69 -0.83 -0.39 -0.61 -0.74 0.24 -0.83 -0.75

Net long-wave exchange -0.74 -0.55 -0.68 -0.73 -0.77 -0.73 -0.79 -0.68 -0.79

Latent heat transfer -0.64 0.08 0.13 -0.44 -0.61 -0.42 -0.59 -0.16 -0.24

Sensible heat transfer -0.78 -0.19 -0.05 -0.69 -0.68 -0.55 -0.84 -0.47 -0.40

Ice surface temperature -0.84 -0.57 -0.72 -0.84 -0.78 -0.77 -0.90 -0.83 -0.82

Ice surface area 0.69 0.68 0.75 0.86 0.68 0.72 0.48 0.86 0.66

Ice average thickness 0.72 0.63 0.73 0.88 0.63 0.66 0.49 0.84 0.62

Lake heat storage -0.45 -0.45 -0.22 -0.62 -0.58 -0.57 -0.37 -0.61 -0.42

Erie Ontario

Jan Feb Mar Jan Feb Mar

Over-lake air temperature -0.79 -0.85 -0.74 -0.74 -0.80 -0.62

Over-lake specific humidity -0.70 -0.81 -0.75 -0.71 -0.72 -0.58

Over-lake wind speed 0.52 0.49 0.20 0.27 0.57 0.50

Over-lake cloud cover 0.17 0.11 0.04 -0.16 0.09 0.23

Surface water temperature -0.49 -0.42 -0.50 -0.57 -0.55 -0.30

Lake evaporation 0.04 -0.06 -0.14 0.39 0.60 0.52

Incident short-wave radiation -0.16 -0.12 -0.03 0.16 -0.09 -0.22

Reflected short-wave radiation -0.74 -0.70 -0.58 -0.25 -0.66 -0.51

Net long-wave exchange -0.53 -0.79 -0.56 -0.59 -0.66 -0.58

Latent heat transfer -0.06 0.02 0.12 -0.39 -0.61 -0.54

Sensible heat transfer -0.66 -0.44 -0.11 -0.63 -0.74 -0.53

Ice surface temperature -0.89 -0.83 -0.68 -0.76 -0.78 -0.58

Ice surface area 0.81 0.77 0.61 0.60 0.74 0.54

Ice average thickness 0.78 0.73 0.65 0.68 0.73 0.50

Lake heat storage -0.28 -0.48 -0.44 -0.61 -0.55
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Table 9.  Correlations between BOM ice cover and previous-month average model 
variables, model calibrated to observed surface temperatures only.

Superior Michigan Huron
Jan Feb Mar Jan Feb Mar Jan Feb Mar

Over-lake air temperature -0.83 -0.66 -0.83 -0.83 -0.86 -0.82 -0.88 -0.90 -0.89

Over-lake specific humidity -0.77 -0.62 -0.73 -0.80 -0.81 -0.74 -0.78 -0.87 -0.84

Over-lake wind speed 0.34 -0.20 -0.31 0.42 0.13 -0.20 0.36 0.44 -0.14

Over-lake cloud cover -0.16 -0.37 -0.46 -0.01 0.05 -0.32 0.00 -0.14 -0.40

Surface water temperature -0.47 -0.65 -0.59 -0.66 -0.71 -0.53 -0.54 -0.80 -0.71

Lake evaporation 0.65 -0.44 -0.59 0.62 -0.26 -0.43 0.65 0.28 -0.24

Incident short-wave radiation 0.14 0.39 0.43 -0.01 -0.09 0.31 -0.02 0.18 0.37

Reflected short-wave radiation -0.20 -0.64 -0.80 0.16 -0.75 -0.69 0.24 -0.42 -0.64

Net long-wave exchange -0.72 -0.49 -0.65 -0.77 -0.64 -0.69 -0.80 -0.71 -0.71

Latent heat transfer -0.66 0.44 0.59 -0.63 0.24 0.43 -0.65 -0.28 0.23

Sensible heat transfer -0.80 0.19 0.51 -0.75 -0.13 0.33 -0.86 -0.60 0.07

Ice surface temperature -0.84 -0.58 -0.72 -0.84 -0.78 -0.76 -0.90 -0.83 -0.82

Ice surface area 0.66 0.72 0.73 0.63 0.42 0.60

Ice average thickness 0.61 0.68 0.75 0.56 0.40 0.54

Lake heat storage -0.41 -0.59 -0.17 -0.59 -0.67 -0.39 -0.50 -0.78 -0.60

Erie Ontario

Jan Feb Mar Jan Feb Mar

Over-lake air temperature -0.81 -0.87 -0.73 -0.73 -0.81 -0.65

Over-lake specific humidity -0.72 -0.84 -0.73 -0.69 -0.73 -0.62

Over-lake wind speed 0.47 0.29 0.32 0.27 0.47 0.41

Over-lake cloud cover 0.17 0.11 0.04 -0.16 0.09 0.23

Surface water temperature -0.62 -0.61 -0.50 -0.52 -0.72 -0.53

Lake evaporation 0.23 -0.51 -0.18 0.57 0.33 0.15

Incident short-wave radiation -0.16 -0.12 -0.03 0.16 -0.09 -0.22

Reflected short-wave radiation -0.73 -0.64 -0.57 -0.14 -0.47 -0.47

Net long-wave exchange -0.63 -0.80 -0.66 -0.66 -0.53 -0.39

Latent heat transfer -0.25 0.50 0.12 -0.57 -0.33 -0.17

Sensible heat transfer -0.71 0.23 -0.11 -0.70 -0.68 -0.33

Ice surface temperature -0.89 -0.83 -0.68 -0.76 -0.78 -0.58

Ice surface area 0.82 0.71 0.64 0.56 0.49

Ice average thickness 0.71 0.70 0.52 0.62 0.50

Lake heat storage -0.57 -0.55 -0.29 -0.49 -0.69 -0.54


